合作客户/
 拜耳公司  | 
 同济大学  | 
 联合大学  | 
 美国保洁  | 
 美国强生  | 
 瑞士罗氏  | 
相关新闻Info
- 
                            
> 3种常见醇类燃料甲醇、乙醇、正丁醇喷雾特性与表面张力的关系(三)
> 超低轨卫星环境效应研究也会用到香蕉视频下载大全?
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(二)
> 基于黑磷纳米片及有机小分子组装单元的有序LB膜制备与性能研究
> 央视CCTV13:普通石化类洗洁剂含有毒害物质对身体危害极大
> 3种不同类型喷雾助剂对氟啶虫胺腈药液表面张力及在苹果叶片润湿持留性能测定(一)
> 高温高压润湿性及界面张力仪功能、使用范围及应用
> 微流控器件结构对水/水微囊形成过程、界面张力的影响规律(三)
> 双缔合型稳泡剂及其制备方法和应用
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(三)
 
推荐新闻Info
- 
                            
> 钠钾离子浓度对矿井水和纯水表面张力、喷雾雾化特性的影响(三)
> 钠钾离子浓度对矿井水和纯水表面张力、喷雾雾化特性的影响(二)
> 钠钾离子浓度对矿井水和纯水表面张力、喷雾雾化特性的影响(一)
> Layzer模型与Zufiria模型研究界面张力对Rayleigh-Taylor气泡不稳定性的影响
> 深过冷Ni-15%Sn合金熔体表面张力的实验研究与应用前景
> 表面张力在微孔曝气法制备微气泡中的核心作用——基于实验研究的深度解析
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(三)
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(二)
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(一)
> 香蕉视频下载大全比普通电子天平“好”在哪?
 
基于水煤浆流变性和动态表面张力观察水煤浆的微观破裂特性(三)
来源: 华东理工大学学报(自然科学版) 浏览 559 次 发布时间:2025-07-14
2.3水煤浆的微观破裂特性
	
与纯液体不同,由于浆体液固混合物流变性和屈服应力等参数的影响,浆体破裂过程更加复杂。在浆体破裂末期,当水煤浆液桥的喉部直径(Dm,如图6所示)尺寸很小时,固体颗粒将会发挥显著影响。典型水煤浆破裂实验照片如图7所示,由于微观破裂条件下液固出现部分分离,煤粉颗粒在液桥喉部附近凸出气液界面,使得原本光滑的水煤浆表面逐渐粗糙,其变化特性与水煤浆黏度、表面张力和屈服应力等参数密切相关。
	
 
图6水煤浆喉部直径示意图
	
 
图7典型水煤浆破裂实验照片(w=60%,华电煤)
	
利用Imagej图像处理软件对液桥喉部直径的变化情况进行了测量,重复3次后的实验测量结果如图8所示。
	
图8水煤浆喉部直径随时间变化关系(不同颜色表示不同实验结果)
	
由图8可知,喉部直径随破裂过程特征时间(tp−t)呈幂函数形式变化,其中tp为水煤浆喉部发生破裂的时间,tr为实际时间。结合图7和图8分析可知,在水煤浆破裂初始阶段,浆体界面仍比较光滑。随着破裂的发展,当喉部直径收缩至2 mm左右(10倍颗粒直径)时,可以认为是进入了微观破裂区,颗粒直径在这个尺度区间对流体的影响较大,会阻碍流体的流动和变形,此时浆体界面会粗糙不平,浮现出固体颗粒。
	
在水煤浆破裂过程中,随着液桥喉部直径的减小,其变形速率加快。喉部的剪切速率(r)与局部水煤浆速度梯度(du/dy)有关,其关系可以近似表示为
	
(3)
	
借鉴文献中对黏性流体喉部破裂的研究结果,有如下关系式:
	
(4)
	
公式(4)是文献基于Navier-Stokes方程推导出的黏性流体破裂的理论模型,为了增强其适用性,本文通过水煤浆流变性和动态表面张力修正,使其适用于水煤浆微观破裂。通过分析水煤浆破裂实验结果,采用式(3)计算浆体喉部剪切速率,结合水煤浆流变性(式(1))和动态表面张力(式(2)),最终获得拟合关系式如下:
	
(5)
	
图9所示为不同条件下水煤浆喉部直径实验值(Dm,EXP)和拟合值(Dm,pre)对比。从式(5)和图9可以看出:影响水煤浆喉部破裂特性的主要参数包括动态表面张力、黏度、屈服应力等;在不同煤种和水煤浆质量分数条件下,水煤浆破裂末期的喉部直径变化趋势保持一致,表明水煤浆微观破裂过程具有一定的相似特性。
	
图9不同条件下水煤浆喉部直径实验值与拟合值对比
	
3结论
	
以神华煤和华电煤为煤种制备了质量分数为58%~62%的水煤浆,使用旋转流变仪、静/动态91精品国产综合久久香蕉麻豆、高速摄像机和图像处理软件等研究了水煤浆理化参数对其微观破裂过程的影响,得到的主要结论如下:
	
(1)所制备的水煤浆均为剪切变稀的非牛顿流体。在剪切速率小于1 s−1区间,水煤浆浓度对浆体黏度有显著影响,浓度越大浆体黏度越大,且剪切变稀特性明显;当剪切速率大于1 s−1时,水煤浆浓度对浆体黏度影响相对减弱,且随着剪切速率的增加,浆体黏度变化较小。采用Herschel-Bulkley模型建立了水煤浆流变关系式为:
	
(2)不同煤种和浓度条件下水煤浆的动态表面张力变化情况比较一致,水煤浆的动态表面张力随着特征气泡时间的增加先减小后增加,在气泡特征时间200 ms附近出现最小值;水煤浆的动态表面张力与静态表面张力存在显著差异,在气泡特征时间较小或较大时,动态表面张力均大于静态表面张力。
	
(3)在水煤浆微观破裂过程中,当破裂末期喉部直径很小时,会出现煤粉颗粒和液体的部分分离,颗粒在液桥喉部附近凸出气液界面,使得原本光滑的水煤浆表面逐渐粗糙。水煤浆喉部直径变化主要受到浆体黏度、表面张力和屈服应力等参数影响,喉部直径随破裂过程特征时间变化表现为幂函数形式,其表达式为
	
符号说明:
	
D——液滴直径,μm
	
Dm——喉部直径,mm
	
D32——索特平均直径,μm
	
D43——德布鲁克平均直径,μm
	
——速度梯度,s−1
	
K——稠度系数,Pa·sn
	
N——液滴数量
	
n——流变指数
	
t——气泡时间,ms
	
tp——水煤浆喉部发生破裂时刻,ms
	
——水煤浆黏度,Pa·s
	
——屈服应力,Pa
	
——剪切速率,s−1
	
σ——液体表面张力,mN/m
	





